Context-Dependent GluN2B-Selective Inhibitors of NMDA Receptor Function Are Neuroprotective with Minimal Side Effects

نویسندگان

  • Hongjie Yuan
  • Scott J. Myers
  • Gordon Wells
  • Katherine L. Nicholson
  • Sharon A. Swanger
  • Polina Lyuboslavsky
  • Yesim A. Tahirovic
  • David S. Menaldino
  • Thota Ganesh
  • Lawrence J. Wilson
  • Dennis C. Liotta
  • James P. Snyder
  • Stephen F. Traynelis
چکیده

Stroke remains a significant problem despite decades of work on neuroprotective strategies. NMDA receptor (NMDAR) antagonists are neuroprotective in preclinical models, but have been clinically unsuccessful, in part due to side effects. Here we describe a prototypical GluN2B-selective antagonist with an IC50 value that is 10-fold more potent at acidic pH 6.9 associated with ischemic tissue compared to pH 7.6, a value close to the pH in healthy brain tissue. This should maximize neuroprotection in ischemic tissue while minimizing on-target side effects associated with NMDAR blockade in noninjured brain regions. We have determined the mechanism underlying pH-dependent inhibition and demonstrate the utility of this approach in vivo. We also identify dicarboxylate dimers as a novel proton sensor in proteins. These results provide insight into the molecular basis of pH-dependent neuroprotective NMDAR block, which could be beneficial in a wide range of neurological insults associated with tissue acidification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation

Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...

متن کامل

GRIN2B gain of function mutations are sensitive to radiprodil, a negative allosteric modulator of GluN2B-containing NMDA receptors

De novo gain of function mutations in GRIN2B encoding the GluN2B subunit of the N-methyl-d-aspartate (NMDA) receptor have been linked with epileptic encephalopathies, including infantile spasms. We investigated the effects of radiprodil, a selective GluN2B negative allosteric modulator and other non-selective NMDA receptor inhibitors on glutamate currents mediated by NMDA receptors containing m...

متن کامل

GluN2B-containing NMDA receptors as possible targets for the neuroprotective and antidepressant effects of fluoxetine.

Accumulating evidence has indicated the involvement of glutamatergic neurotransmission in the pathophysiology of excitotoxicity and in the mechanism of action of antidepressants. We have previously shown that tricyclic desipramine and the selective serotonin reuptake inhibitor fluoxetine inhibit NMDA receptors (NMDARs) in the clinically relevant, low micromolar concentration range. As the diffe...

متن کامل

Ifenprodil effects on GluN2B-containing glutamate receptors.

N-Methyl-d-aspartate (NMDA) receptors are glutamate- and glycine-gated channels that mediate fast excitatory transmission in the central nervous system and are critical to synaptic development, plasticity, and integration. They have a rich complement of modulatory sites, which represent important pharmacological targets. Ifenprodil is a well tolerated NMDA receptor inhibitor; it is selective fo...

متن کامل

Direct pharmacological monitoring of the developmental switch in NMDA receptor subunit composition using TCN 213, a GluN2A-selective, glycine-dependent antagonist

BACKGROUND AND PURPOSE Developmental switches in NMDA receptor subunit expression have been inferred from studies of GluN2 expression levels, changes in kinetics of glutamatergic synaptic currents and sensitivity of NMDA receptor-mediated currents to selective GluN2B antagonists. Here we use TCN 213, a novel GluN2A-selective antagonist to identify the presence of this subunit in functional NMDA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2015